亚欧美无遮挡hd高清在线视频_国产在线拍偷自揄拍精品_欧美综合视频_免费在线观看成人av

廣東可易亞半導(dǎo)體科技有限公司

國(guó)家高新企業(yè)

cn en

新聞中心

mosfet與igbt應(yīng)用區(qū)別分析對(duì)比 KIA-電子元器件

信息來(lái)源:本站 日期:2017-12-17 

分享到:

MOSFET和IGBT內(nèi)部結(jié)構(gòu)不同,決定了其應(yīng)用領(lǐng)域的不同。


1、由于MOSFET的結(jié)構(gòu),通常它可以做到電流很大,可以到上KA,但是前提耐壓能力沒(méi)有IGBT強(qiáng)。

2、IGBT可以做很大功率,電流和電壓都可以,就是一點(diǎn)頻率不是太高,目前IGBT硬開(kāi)關(guān)速度可以到100KHZ,那已經(jīng)是不錯(cuò)了。不過(guò)相對(duì)于MOSFET的工作頻率還是九牛一毛,MOSFET可以工作到幾百KHZ,上MHZ,以至幾十MHZ,射頻領(lǐng)域的產(chǎn)品。

3、就其應(yīng)用,根據(jù)其特點(diǎn):MOSFET應(yīng)用于開(kāi)關(guān)電源,鎮(zhèn)流器,高頻感應(yīng)加熱,高頻逆變焊機(jī),通信電源等等高頻電源領(lǐng)域;IGBT集中應(yīng)用于焊機(jī),逆變器,變頻器,電鍍電解電源,超音頻感應(yīng)加熱等領(lǐng)域


開(kāi)關(guān)電源 (Switch Mode Power Supply;SMPS) 的性能在很大程度上依賴于功率半導(dǎo)體器件的選擇,即開(kāi)關(guān)管和整流器。


雖然沒(méi)有萬(wàn)全的方案來(lái)解決選擇IGBT還是MOSFET的問(wèn)題,但針對(duì)特定SMPS應(yīng)用中的IGBT 和 MOSFET進(jìn)行性能比較,確定關(guān)鍵參數(shù)的范圍還是能起到一定的參考作用。


本文將對(duì)一些參數(shù)進(jìn)行探討,如硬開(kāi)關(guān)和軟開(kāi)關(guān)ZVS (零電壓轉(zhuǎn)換) 拓?fù)渲械拈_(kāi)關(guān)損耗,并對(duì)電路和器件特性相關(guān)的三個(gè)主要功率開(kāi)關(guān)損耗—導(dǎo)通損耗、傳導(dǎo)損耗和關(guān)斷損耗進(jìn)行描述。此外,還通過(guò)舉例說(shuō)明二極管的恢復(fù)特性是決定MOSFET 或 IGBT導(dǎo)通開(kāi)關(guān)損耗的主要因素,討論二極管恢復(fù)性能對(duì)于硬開(kāi)關(guān)拓?fù)涞挠绊憽?


導(dǎo)通損耗


除了IGBT的電壓下降時(shí)間較長(zhǎng)外,IGBT和功率MOSFET的導(dǎo)通特性十分類似。由基本的IGBT等效電路(見(jiàn)圖1)可看出,完全調(diào)節(jié)PNP BJT集電極基極區(qū)的少數(shù)載流子所需的時(shí)間導(dǎo)致了導(dǎo)通電壓拖尾(voltage tail)出現(xiàn)。

mosfet與igbt區(qū)別

這種延遲引起了類飽和 (Quasi-saturation) 效應(yīng),使集電極/發(fā)射極電壓不能立即下降到其VCE(sat)值。這種效應(yīng)也導(dǎo)致了在ZVS情況下,在負(fù)載電流從組合封裝的反向并聯(lián)二極管轉(zhuǎn)換到 IGBT的集電極的瞬間,VCE電壓會(huì)上升。IGBT產(chǎn)品規(guī)格書(shū)中列出的Eon能耗是每一轉(zhuǎn)換周期Icollector與VCE乘積的時(shí)間積分,單位為焦耳,包含了與類飽和相關(guān)的其他損耗。其又分為兩個(gè)Eon能量參數(shù),Eon1和Eon2。Eon1是沒(méi)有包括與硬開(kāi)關(guān)二極管恢復(fù)損耗相關(guān)能耗的功率損耗;Eon2則包括了與二極管恢復(fù)相關(guān)的硬開(kāi)關(guān)導(dǎo)通能耗,可通過(guò)恢復(fù)與IGBT組合封裝的二極管相同的二極管來(lái)測(cè)量,典型的Eon2測(cè)試電路如圖2所示。IGBT通過(guò)兩個(gè)脈沖進(jìn)行開(kāi)關(guān)轉(zhuǎn)換來(lái)測(cè)量Eon。第一個(gè)脈沖將增大電感電流以達(dá)致所需的測(cè)試電流,然后第二個(gè)脈沖會(huì)測(cè)量測(cè)試電流在二極管上恢復(fù)的Eon損耗。

mosfet與igbt區(qū)別

在硬開(kāi)關(guān)導(dǎo)通的情況下,柵極驅(qū)動(dòng)電壓和阻抗以及整流二極管的恢復(fù)特性決定了Eon開(kāi)關(guān)損耗。對(duì)于像傳統(tǒng)CCM升壓PFC電路來(lái)說(shuō),升壓二極管恢復(fù)特性在Eon (導(dǎo)通) 能耗的控制中極為重要。除了選擇具有最小Trr和QRR的升壓二極管之外,確保該二極管擁有軟恢復(fù)特性也非常重要。軟化度 (Softness),即tb/ta比率,對(duì)開(kāi)關(guān)器件產(chǎn)生的電氣噪聲和電壓尖脈沖 (voltage spike) 有相當(dāng)?shù)挠绊憽D承└咚俣O管在時(shí)間tb內(nèi),從IRM(REC)開(kāi)始的電流下降速率(di/dt)很高,故會(huì)在電路寄生電感中產(chǎn)生高電壓尖脈沖。這些電壓尖脈沖會(huì)引起電磁干擾(EMI),并可能在二極管上導(dǎo)致過(guò)高的反向電壓。


在硬開(kāi)關(guān)電路中,如全橋和半橋拓?fù)渲校cIGBT組合封裝的是快恢復(fù)管或MOSFET體二極管,當(dāng)對(duì)應(yīng)的開(kāi)關(guān)管導(dǎo)通時(shí)二極管有電流經(jīng)過(guò),因而二極管的恢復(fù)特性決定了Eon損耗。所以,選擇具有快速體二極管恢復(fù)特性的MOSFET十分重要。不幸的是,MOSFET的寄生二極管或體二極管的恢復(fù)特性比業(yè)界目前使用的分立二極管要緩慢。因此,對(duì)于硬開(kāi)關(guān)MOSFET應(yīng)用而言,體二極管常常是決定SMPS工作頻率的限制因素。


一般來(lái)說(shuō),IGBT組合封裝二極管的選擇要與其應(yīng)用匹配,具有較低正向傳導(dǎo)損耗的較慢型超快二極管與較慢的低VCE(sat)電機(jī)驅(qū)動(dòng)IGBT組合封裝在一起。相反地,軟恢復(fù)超快二極管,可與高頻SMPS2開(kāi)關(guān)模式IGBT組合封裝在一起。


除了選擇正確的二極管外,設(shè)計(jì)人員還能夠通過(guò)調(diào)節(jié)柵極驅(qū)動(dòng)導(dǎo)通源阻抗來(lái)控制Eon損耗。降低驅(qū)動(dòng)源阻抗將提高IGBT或MOSFET的導(dǎo)通di/dt及減小Eon損耗。Eon損耗和EMI需要折中,因?yàn)檩^高的di/dt 會(huì)導(dǎo)致電壓尖脈沖、輻射和傳導(dǎo)EMI增加。為選擇正確的柵極驅(qū)動(dòng)阻抗以滿足導(dǎo)通di/dt 的需求,可能需要進(jìn)行電路內(nèi)部測(cè)試與驗(yàn)證,然后根據(jù)MOSFET轉(zhuǎn)換曲線可以確定大概的值 (見(jiàn)圖3)。


假定在導(dǎo)通時(shí),F(xiàn)ET電流上升到10A,根據(jù)圖3中25℃的那條曲線,為了達(dá)到10A的值,柵極電壓必須從5。2V轉(zhuǎn)換到6。7V,平均GFS為10A/(6。7V-5。2V)=6。7mΩ。

mosfet與igbt區(qū)別

公式1 獲得所需導(dǎo)通di/dt的柵極驅(qū)動(dòng)阻抗


把平均GFS值運(yùn)用到公式1中,得到柵極驅(qū)動(dòng)電壓Vdrive=10V,所需的 di/dt=600A/μs,F(xiàn)CP11N60典型值VGS(avg)=6V,Ciss=1200pF;于是可以計(jì)算出導(dǎo)通柵極驅(qū)動(dòng)阻抗為37Ω。由于在圖3的曲線中瞬態(tài)GFS值是一條斜線,會(huì)在Eon期間出現(xiàn)變化,意味著di/dt也會(huì)變化。呈指數(shù)衰減的柵極驅(qū)動(dòng)電流Vdrive和下降的Ciss作為VGS的函數(shù)也進(jìn)入了該公式,表現(xiàn)具有令人驚訝的線性電流上升的總體效應(yīng)。


同樣的,IGBT也可以進(jìn)行類似的柵極驅(qū)動(dòng)導(dǎo)通阻抗計(jì)算,VGE(avg) 和 GFS可以通過(guò)IGBT的轉(zhuǎn)換特性曲線來(lái)確定,并應(yīng)用VGE(avg)下的CIES值代替Ciss。計(jì)算所得的IGBT導(dǎo)通柵極驅(qū)動(dòng)阻抗為100Ω,該值比前面的37Ω高,表明IGBT GFS較高,而CIES較低。這里的關(guān)鍵之處在于,為了從MOSFET轉(zhuǎn)換到IGBT,必須對(duì)柵極驅(qū)動(dòng)電路進(jìn)行調(diào)節(jié)。


傳導(dǎo)損耗需謹(jǐn)慎


在比較額定值為600V的器件時(shí),IGBT的傳導(dǎo)損耗一般比相同芯片大小的600 V MOSFET少。這種比較應(yīng)該是在集電極和漏極電流密度可明顯感測(cè),并在指明最差情況下的工作結(jié)溫下進(jìn)行的。例如,F(xiàn)GP20N6S2 SMPS2 IGBT 和 FCP11N60 SuperFET均具有1℃/W的RθJC值。圖4顯示了在125℃的結(jié)溫下傳導(dǎo)損耗與直流電流的關(guān)系,圖中曲線表明在直流電流大于2。92A后,MOSFET的傳導(dǎo)損耗更大。


mosfet與igbt區(qū)別

不過(guò),圖4中的直流傳導(dǎo)損耗比較不適用于大部分應(yīng)用。同時(shí),圖5中顯示了傳導(dǎo)損耗在CCM (連續(xù)電流模式)、升壓PFC電路,125℃的結(jié)溫以及85V的交流輸入電壓Vac和400 Vdc直流輸出電壓的工作模式下的比較曲線。圖中,MOSFET-IGBT的曲線相交點(diǎn)為2。65A RMS。對(duì)PFC電路而言,當(dāng)交流輸入電流大于2。65A RMS時(shí),MOSFET具有較大的傳導(dǎo)損耗。2。65A PFC交流輸入電流等于MOSFET中由公式2計(jì)算所得的2。29A RMS。MOSFET傳導(dǎo)損耗、I2R,利用公式2定義的電流和MOSFET   125℃的RDS(on)可以計(jì)算得出。把RDS(on)隨漏極電流變化的因素考慮在內(nèi),該傳導(dǎo)損耗還可以進(jìn)一步精確化,這種關(guān)系如圖6所示。

mosfet與igbt區(qū)別

一篇名為“如何將功率MOSFET的RDS(on)對(duì)漏極電流瞬態(tài)值的依賴性包含到高頻三相PWM逆變器的傳導(dǎo)損耗計(jì)算中”的IEEE文章描述了如何確定漏極電流對(duì)傳導(dǎo)損耗的影響。作為ID之函數(shù),RDS(on)變化對(duì)大多數(shù)SMPS拓?fù)涞挠绊懞苄 @纾赑FC電路中,當(dāng)FCP11N60 MOSFET的峰值電流ID為11A——兩倍于5。5A (規(guī)格書(shū)中RDS(on) 的測(cè)試條件) 時(shí),RDS(on)的有效值和傳導(dǎo)損耗會(huì)增加5%。


在MOSFET傳導(dǎo)極小占空比的高脈沖電流拓?fù)浣Y(jié)構(gòu)中,應(yīng)該考慮圖6所示的特性。如果FCP11N60 MOSFET工作在一個(gè)電路中,其漏極電流為占空比7。5%的20A脈沖 (即5。5A RMS),則有效的RDS(on)將比5。5A(規(guī)格書(shū)中的測(cè)試電流)時(shí)的0。32歐姆大25%。


式2中,Iacrms是PFC電路RMS輸入電流;Vac是 PFC 電路RMS輸入電壓;Vout是直流輸出電壓。


在實(shí)際應(yīng)用中,計(jì)算IGBT在類似PFC電路中的傳導(dǎo)損耗將更加復(fù)雜,因?yàn)槊總€(gè)開(kāi)關(guān)周期都在不同的IC上進(jìn)行。IGBT的VCE(sat)不能由一個(gè)阻抗表示,比較簡(jiǎn)單直接的方法是將其表示為阻抗RFCE串聯(lián)一個(gè)固定VFCE電壓,VCE(ICE)=ICE×RFCE+VFCE。于是,傳導(dǎo)損耗便可以計(jì)算為平均集電極電流與VFCE的乘積,加上RMS集電極電流的平方,再乘以阻抗RFCE。


圖5中的示例僅考慮了CCM PFC電路的傳導(dǎo)損耗,即假定設(shè)計(jì)目標(biāo)在維持最差情況下的傳導(dǎo)損耗小于15W。以FCP11N60 MOSFET為例,該電路被限制在5。8A,而FGP20N6S2 IGBT可以在9。8A的交流輸入電流下工作。它可以傳導(dǎo)超過(guò)MOSFET 70% 的功率。


雖然IGBT的傳導(dǎo)損耗較小,但大多數(shù)600V IGBT都是PT (Punch Through,穿透) 型器件。PT器件具有NTC (負(fù)溫度系數(shù))特性,不能并聯(lián)分流。或許,這些器件可以通過(guò)匹配器件VCE(sat)、VGE(TH) (柵射閾值電壓) 及機(jī)械封裝以有限的成效進(jìn)行并聯(lián),以使得IGBT芯片們的溫度可以保持一致的變化。相反地,MOSFET具有PTC (正溫度系數(shù)),可以提供良好的電流分流。


關(guān)斷損耗——問(wèn)題尚未結(jié)束


在硬開(kāi)關(guān)、鉗位感性電路中,MOSFET的關(guān)斷損耗比IGBT低得多,原因在于IGBT 的拖尾電流,這與清除圖1中PNP BJT的少數(shù)載流子有關(guān)。圖7顯示了集電極電流ICE和結(jié)溫Tj的函數(shù)Eoff,其曲線在大多數(shù)IGBT數(shù)據(jù)表中都有提供。 這些曲線基于鉗位感性電路且測(cè)試電壓相同,并包含拖尾電流能量損耗。

mosfet與igbt區(qū)別

圖2顯示了用于測(cè)量IGBT Eoff的典型測(cè)試電路, 它的測(cè)試電壓,即圖2中的VDD,因不同制造商及個(gè)別器件的BVCES而異。在比較器件時(shí)應(yīng)考慮這測(cè)試條件中的VDD,因?yàn)樵谳^低的VDD鉗位電壓下進(jìn)行測(cè)試和工作將導(dǎo)致Eoff能耗降低。


降低柵極驅(qū)動(dòng)關(guān)斷阻抗對(duì)減小IGBT Eoff損耗影響極微。如圖1所示,當(dāng)?shù)刃У亩鄶?shù)載流子MOSFET關(guān)斷時(shí),在IGBT少數(shù)載流子BJT中仍存在存儲(chǔ)時(shí)間延遲td(off)I。不過(guò),降低Eoff驅(qū)動(dòng)阻抗將會(huì)減少米勒電容 (Miller capacitance) CRES和關(guān)斷VCE的 dv/dt造成的電流注到柵極驅(qū)動(dòng)回路中的風(fēng)險(xiǎn),避免使器件重新偏置為傳導(dǎo)狀態(tài),從而導(dǎo)致多個(gè)產(chǎn)生Eoff的開(kāi)關(guān)動(dòng)作。


ZVS和ZCS拓?fù)湓诮档蚆OSFET 和 IGBT的關(guān)斷損耗方面很有優(yōu)勢(shì)。不過(guò)ZVS的工作優(yōu)點(diǎn)在IGBT中沒(méi)有那么大,因?yàn)楫?dāng)集電極電壓上升到允許多余存儲(chǔ)電荷進(jìn)行耗散的電勢(shì)值時(shí),會(huì)引發(fā)拖尾沖擊電流Eoff。ZCS拓?fù)淇梢蕴嵘畲蟮腎GBT Eoff性能。正確的柵極驅(qū)動(dòng)順序可使IGBT柵極信號(hào)在第二個(gè)集電極電流過(guò)零點(diǎn)以前不被清除,從而顯著降低IGBT ZCS Eoff 。


MOSFET的 Eoff能耗是其米勒電容Crss、柵極驅(qū)動(dòng)速度、柵極驅(qū)動(dòng)關(guān)斷源阻抗及源極功率電路路徑中寄生電感的函數(shù)。該電路寄生電感Lx (如圖8所示) 產(chǎn)生一個(gè)電勢(shì),通過(guò)限制電流速度下降而增加關(guān)斷損耗。在關(guān)斷時(shí),電流下降速度di/dt由Lx和VGS(th)決定。如果Lx=5nH,VGS(th)=4V,則最大電流下降速度為VGS(th)/Lx=800A/μs。

mosfet與igbt區(qū)別

總結(jié):


在選用功率開(kāi)關(guān)器件時(shí),并沒(méi)有萬(wàn)全的解決方案,電路拓?fù)洹⒐ぷ黝l率、環(huán)境溫度和物理尺寸,所有這些約束都會(huì)在做出最佳選擇時(shí)起著作用。


在具有最小Eon損耗的ZVS 和 ZCS應(yīng)用中,MOSFET由于具有較快的開(kāi)關(guān)速度和較少的關(guān)斷損耗,因此能夠在較高頻率下工作。


對(duì)硬開(kāi)關(guān)應(yīng)用而言,MOSFET寄生二極管的恢復(fù)特性可能是個(gè)缺點(diǎn)。相反,由于IGBT組合封裝內(nèi)的二極管與特定應(yīng)用匹配,極佳的軟恢復(fù)二極管可與更高速的SMPS器件相配合。


后語(yǔ):MOSFE和IGBT是沒(méi)有本質(zhì)區(qū)別的,人們常問(wèn)的“是MOSFET好還是IGBT好”這個(gè)問(wèn)題本身就是錯(cuò)誤的。至于我們?yōu)楹斡袝r(shí)用MOSFET,有時(shí)又不用MOSFET而采用IGBT,不能簡(jiǎn)單的用好和壞來(lái)區(qū)分,來(lái)判定,需要用辯證的方法來(lái)考慮這個(gè)問(wèn)題。


聯(lián)系方式:鄒先生

聯(lián)系電話:0755-83888366-8022

手機(jī):18123972950

QQ:2880195519

聯(lián)系地址:深圳市福田區(qū)車公廟天安數(shù)碼城天吉大廈CD座5C1


請(qǐng)搜微信公眾號(hào):“KIA半導(dǎo)體”或掃一掃下圖“關(guān)注”官方微信公眾號(hào)

請(qǐng)“關(guān)注”官方微信公眾號(hào):提供  MOS管  技術(shù)幫助






亚欧美无遮挡hd高清在线视频_国产在线拍偷自揄拍精品_欧美综合视频_免费在线观看成人av
欧美.www| 美美哒免费高清在线观看视频一区二区| 日韩和欧美一区二区三区| 91网站在线播放| 日韩欧美在线一区二区三区| 精品写真视频在线观看| 在线视频综合导航| 亚洲成人动漫av| 亚洲国产一区二区三区在线播| 国产婷婷一区二区| 91麻豆国产在线观看| 精品久久久三级丝袜| 福利电影一区二区三区| 欧美一区二区三区视频免费| 国产一区二区h| 欧美精品aⅴ在线视频| 美女视频免费一区| 色狠狠色狠狠综合| 日韩av电影免费观看高清完整版在线观看| 国产精品久久久久三级| 欧美一区免费视频| 久久久久久久久一| 欧美在线三区| 久久新电视剧免费观看| 成人高清视频在线观看| 2023国产精华国产精品| 色综合天天综合网天天狠天天| 久久精品一区二区三区不卡牛牛| 成人午夜激情片| 精品1区2区在线观看| 99re视频精品| 国产午夜精品久久久久久久| 欧美精品二区| 中文字幕一区二区三区不卡在线 | 在线免费观看日韩欧美| 亚洲与欧洲av电影| 久久看片网站| 久久精品国产一区二区三区免费看| 91国产视频在线观看| 久久69国产一区二区蜜臀| 欧美日韩美少妇| 国产成人自拍网| 亚洲精品在线一区二区| 国模精品娜娜一二三区| 亚洲黄色小视频| 老牛嫩草一区二区三区日本| 精品一区二区三区免费| 久久伊99综合婷婷久久伊| 欧美日韩一区自拍| 伊人婷婷欧美激情| 久久精品国产第一区二区三区最新章节 | 欧美日韩影院| 日韩精品一区二区三区四区视频| 国产精品77777| 国产欧美一区二区三区在线看蜜臀 | 日本一区二区免费在线观看视频| 欧美群妇大交群的观看方式| 欧美性一二三区| 国产精品18久久久久久久久久久久 | 中文欧美字幕免费| 国产日韩一区二区三区在线| 亚洲图片有声小说| 在线一区二区三区| 国产精品乡下勾搭老头1| 日韩不卡一二三区| 久久伊人亚洲| 国产成人av影院| 国产拍欧美日韩视频二区| 国产农村妇女毛片精品久久莱园子 | 久久国产精品99久久久久久老狼| 日韩一区二区精品在线观看| 国产精品xxx在线观看www| 亚洲18色成人| 欧美一区二区视频在线观看2022| 欧美精品九九| 日韩福利电影在线| 欧美mv日韩mv国产| 国产视频一区欧美| 国产成人午夜高潮毛片| 亚洲人成小说网站色在线| 欧美三级日韩在线| 亚洲欧美伊人| 日韩电影在线观看电影| 精品国产精品一区二区夜夜嗨| 国产日韩一区| av中文字幕亚洲| 亚洲高清不卡在线| 亚洲成国产人片在线观看| 午夜视频久久久| 亚洲一区二区三区精品在线| 欧美人动与zoxxxx乱| 9国产精品视频| 久久精品久久久精品美女| 欧美xfplay| 亚洲激情av| 久久不见久久见中文字幕免费| 久久婷婷国产综合精品青草 | 国产电影精品久久禁18| 国产精品剧情在线亚洲| 欧日韩精品视频| 午夜精品免费| 日本成人在线视频网站| 国产日韩精品视频一区| 91国产精品成人| 国内揄拍国内精品久久| 国内精品自线一区二区三区视频| 中文字幕不卡的av| 欧美嫩在线观看| 亚洲精品护士| 成人综合在线网站| 亚洲第一成人在线| 久久久久久**毛片大全| 午夜一级在线看亚洲| 成人理论电影网| 亚洲午夜久久久久中文字幕久| 日韩欧美黄色影院| 午夜在线一区| 欧美日本一区| 国产不卡一区视频| 亚洲国产综合91精品麻豆| 久久亚洲精品国产精品紫薇| 色哟哟精品一区| 韩国av一区| 国产成人亚洲综合a∨婷婷| 亚洲一区二区三区美女| 国产日韩欧美精品在线| 欧美精品自拍偷拍| 西西人体一区二区| 国产精品xnxxcom| 粉嫩蜜臀av国产精品网站| 亚洲不卡在线观看| 国产精品麻豆久久久| 日韩一区二区三区四区| 久久久噜噜噜久久狠狠50岁| 欧美日韩另类综合| 国产精品主播直播| 日韩国产精品91| 亚洲国产中文字幕在线视频综合| 欧美国产激情一区二区三区蜜月 | 国产精品国产三级国产三级人妇 | 久久精品国产99| 亚洲综合免费观看高清完整版| 精品999在线播放| 欧美日韩精品一区视频| 美女久久一区| 亚洲性人人天天夜夜摸| 成人免费视频一区二区| 精品亚洲国产成人av制服丝袜| 午夜精品福利久久久| 亚洲综合色噜噜狠狠| 国产精品免费视频观看| 91精品欧美福利在线观看| 久久久亚洲人| 亚洲福利精品| av午夜精品一区二区三区| 精品一区二区三区久久| 丝袜亚洲另类丝袜在线| 一区二区三区日韩| 欧美国产一区视频在线观看| 精品国产人成亚洲区| 欧美一区二区啪啪| 欧美绝品在线观看成人午夜影视| 久久精品人人| 久久蜜桃精品| 老鸭窝毛片一区二区三区| 亚洲经典三级| 精品二区久久| 欧美日韩精品一区| 欧美激情一区| 欧美a级在线| 欧美福利影院| 99久久久无码国产精品| 懂色一区二区三区免费观看 | 麻豆国产欧美日韩综合精品二区| 日韩精品亚洲一区二区三区免费| 亚洲丶国产丶欧美一区二区三区| 亚洲欧美一区二区三区孕妇| 亚洲欧洲日韩一区二区三区| 国产精品久久久久久久久免费相片 | 日韩欧美国产一二三区| 91精品国产欧美一区二区成人| 欧美日韩www| 欧美日韩国产美女| 91精品啪在线观看国产60岁| 91精品综合久久久久久| 9191精品国产综合久久久久久| 欧美美女激情18p| 欧美精品久久一区二区三区| 欧美丝袜丝交足nylons图片| 欧美日韩国产美| 91精品国产美女浴室洗澡无遮挡| 欧美一级爆毛片| 日韩一区二区三区观看| 欧美r级在线观看| 欧美电影免费观看高清完整版在 | 国产人成一区二区三区影院| 中文字幕欧美日本乱码一线二线| 国产精品美女久久久久久久网站| 亚洲欧美自拍偷拍色图| 一区二区三区精品久久久|